Effect of Nano-SiO2 on the Hydration and Microstructure of Portland Cement
نویسندگان
چکیده
This paper systematically studied the modification of cement-based materials by nano-SiO₂ particles with an average diameter of about 20 nm. In order to obtain the effect of nano-SiO₂ particles on the mechanical properties, hydration, and pore structure of cement-based materials, adding 1%, 3%, and 5% content of nano-SiO₂ in cement paste, respectively. The results showed that the reaction of nano-SiO₂ particles with Ca(OH)₂ (crystal powder) started within 1 h, and formed C-S-H gel. The reaction speed was faster after aging for three days. The mechanical properties of cement-based materials were improved with the addition of 3% nano-SiO₂, and the early strength enhancement of test pieces was obvious. Three-day compressive strength increased 33.2%, and 28-day compressive strength increased 18.5%. The exothermic peak of hydration heat of cement increased significantly after the addition of nano-SiO₂. Appearance time of the exothermic peak was advanced and the total heat release increased. Thermogravimetric-differential scanning calorimetry (TG-DSC) analysis showed that nano-SiO₂ promoted the formation of C-S-H gel. The results of mercury intrusion porosimetry (MIP) showed that the total porosity of cement paste with 3% nano-SiO₂ was reduced by 5.51% and 5.4% at three days and 28 days, respectively, compared with the pure cement paste. At the same time, the pore structure of cement paste was optimized, and much-detrimental pores and detrimental pores decreased, while less harmful pores and innocuous pores increased.
منابع مشابه
Effect of Nano-SiO2 on the Early Hydration of Alite-Sulphoaluminate Cement
The impact of nano-SiO₂ on the early hydration properties of alite-sulphoaluminate (AC$A) cement was investigated with a fixed water to solid ratio (w/s) of one. Nano-SiO₂ was used in partial substitution of AC$A cement at zero, one and three wt %. Calorimetry, X-ray diffraction (XRD), thermogravimetric/derivative thermogravimetric (TG/DTG), mercury intrusion porosimetry (MIP) and scanning elec...
متن کاملCompressive strength of Portland cement pastes and mortars containing Cu-Zn nano-ferrite
This study is concerned with the synthesizing of Cu-Zn nano-ferrite particles in the laboratory applying simple techniques. The morphology of the synthesized nano-particles was analyzed using Transmission Electron Microscopy (TEM), and the minerals were identified using X-ray diffraction (XRD). The nano material was used to replace 1- 4 percent by weight of Portland cement in cement pastes and ...
متن کاملCompressive strength of Portland cement pastes and mortars containing Cu-Zn nano-ferrite
This study is concerned with the synthesizing of Cu-Zn nano-ferrite particles in the laboratory applying simple techniques. The morphology of the synthesized nano-particles was analyzed using Transmission Electron Microscopy (TEM), and the minerals were identified using X-ray diffraction (XRD). The nano material was used to replace 1- 4 percent by weight of Portland cement in cement pastes and ...
متن کاملThe Effect of TiO2 Doped Photocatalytic Nano-Additives on the Hydration and Microstructure of Portland and High Alumina Cements
Mortars with two different binders (Portland cement (PC) and high alumina cement (HAC)) were modified upon the bulk incorporation of nano-structured photocatalytic additives (bare TiO₂, and TiO₂ doped with either iron (Fe-TiO₂) or vanadium (V-TiO₂)). Plastic and hardened state properties of these mortars were assessed in order to study the influence of these nano-additives. Water demand was inc...
متن کاملRice Husk and Old Corrugated Container Cement Boards: Performance of Nano-SiO2 on Strength and Dimensional Stability
In this study the effect of nano sized silica particles (nano-SiO2) on the physical and mechanical properties of rice husk and Old Corrugated Container (OCC)-cement boards was investigated. Modulus Of Rupture (MOR), Modulus Of Elasticity (MOE), Internal Bonding Strength (IB), density, water absorption and thickness swelling after 24 hours immersion in water and hardness were meas...
متن کامل